Hybrid bio-photo-electro-chemical cells for solar water splitting

نویسندگان

  • Roy I. Pinhassi
  • Dan Kallmann
  • Gadiel Saper
  • Hen Dotan
  • Artyom Linkov
  • Asaf Kay
  • Varda Liveanu
  • Gadi Schuster
  • Noam Adir
  • Avner Rothschild
چکیده

Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (...

متن کامل

Novel application of hybrid Perovskite materials in grid-connected photo-voltaic cells

In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...

متن کامل

Photo corrosion of titania nanotubes within water splitting reaction

Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...

متن کامل

Photo corrosion of titania nanotubes within water splitting reaction

Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...

متن کامل

Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory.

An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO(2) functionalized with gold nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016